Knitting for heart valve tissue engineering
نویسندگان
چکیده
Knitting is a versatile technology which offers a large portfolio of products and solutions of interest in heart valve (HV) tissue engineering (TE). One of the main advantages of knitting is its ability to construct complex shapes and structures by precisely assembling the yarns in the desired position. With this in mind, knitting could be employed to construct a HV scaffold that closely resembles the authentic valve. This has the potential to reproduce the anisotropic structure that is characteristic of the heart valve with the yarns, in particular the 3-layered architecture of the leaflets. These yarns can provide oriented growth of cells lengthwise and consequently enable the deposition of extracellular matrix (ECM) proteins in an oriented manner. This technique, therefore, has a potential to provide a functional knitted scaffold, but to achieve that textile engineers need to gain a basic understanding of structural and mechanical aspects of the heart valve and in addition, tissue engineers must acquire the knowledge of tools and capacities that are essential in knitting technology. The aim of this review is to provide a platform to consolidate these two fields as well as to enable an efficient communication and cooperation among these two research areas.
منابع مشابه
Fabrication and characterization of nanofibrous tricuspid valve scaffold based on polyurethane for heart valve tissue engineering
Objective(s): Tissue engineering represents a new approach to solve the current complications of the heart valve replacements by offering viable valve prosthesis with growth and remodeling capability. In this project, electrospinning and dip coating techniques were used to fabricate heart valve constructs from medical grade polyurethane (PU). Methods: Fir...
متن کاملDoppler echocardiographic findings in tissue engineered aortic valve in a sheep model
Background: Heart valve diseases are considered a common disease in human and animals, and valve replacement is an option for treatment of valvular diseases. Objectives: In this study efficacy of a tissue engineered valve in thoracic aorta was evaluated with transthoracic echocardiography. Methods: This study was undertaken on 6 male sheep. Echocardiography was performed on all sheep 24 hours b...
متن کاملElectrospinning versus knitting: two scaffolds for tissue engineering of the aortic valve.
Two types of scaffolds were developed for tissue engineering of the aortic valve; an electrospun valvular scaffold and a knitted valvular scaffold. These scaffolds were compared in a physiologic flow system and in a tissue-engineering process. In fibrin gel enclosed human myofibroblasts were seeded onto both types of scaffolds and cultured for 23 days under continuous medium perfusion. Tissue f...
متن کاملIntroduction and Use of an Education-notification Application for Patients Undergoing Heart Valve Replacement
Proper education and notification of patients undergoing heart valve replacement is of paramount importance. The past decade has witnessed a growing interest in the use of modern, advanced technologies in medicine and patient education. This study aimed to introduce an education-notification application for patients undergoing heart valve replacement. Research was carried out in two phases of s...
متن کاملReview article: Tissue engineering of semilunar heart valves: current status and future developments.
Heart valve replacement represents the most common surgical therapy for end-stage valvular heart diseases. One major drawback that all heart valve replacements have in common is the lack of growth, repair, and remodeling capability once implanted into the body. The emerging field of tissue engineering is focusing on the in-vitro generation of functional, living semilunar heart valve replacement...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016